
Quality Models To Measure Software Quality:A
Descriptional Review

Mechanical Department
Trinity College of Engineering Trivandrum

Trivandrum, India
deepusajeev@outlook.com

Mechanical Department
College of Engineering Trivandrum

Trivandrum, India
profssk@yahoo.com

Abstract - The software industry is largely affected by cost-
overruns, delays, poor customer satisfaction and quality issues
that are costing clients and customers world-wide lots of money
each year. The phenomenon is known as “The Software Crisis”.
Software Quality Engineering is an emerging discipline that is
concerned with improving the approach to software quality. It is
important that this discipline be firmly rooted in a quality model
satisfying its needs. Software Quality Engineering needs a quality
model that is usable throughout the software lifecycle and that it
embraces all the perspectives of quality. Software quality models
are a well-accepted means to support quality management of
software systems. Over the last 30 years, lots of quality models have
been proposed and applied with varying degrees of success. Despite
successes and standardisation efforts, quality models are still being
criticized, as their application in practice exhibits various problems.
The goal of this paper is to find out a quality model suitable for
such a purpose in Indian Software development Sector, through the
comparative review study of existing quality models used outside
India and their respective support for Software Quality
Engineering.

Keywords— Software Project Management, Software Quality,
Software Testing, Quality Models.

I. INTRODUCTION

Software technology has become an integrated and
ubiquitous element in all kinds of human activity. The Internet
grew in less than two decades to achieve the status of the
largest information repository in human history. Computers,
interconnected by complex and interdependent networks, are
running software applications that control air traffic, satellite
positioning, banking transactions and hospital emergency etc.
With this increased dependence on information systems,
technology failures might have disastrous effects. Such
failures may result from both the hardware and software
elements of the system, but while hardware design and
manufacture has accumulated an admirable track record of
reliability and dependability, software reliability has attracted
much less attention.

Different approaches have been proposed to address the
software quality issue. Proposed solutions include testing tools
and methodologies, software development techniques, project
management disciplines and training and development
schemes. The field of software testing in particular grew
substantially in the last decade. Researchers and practitioners

within this field are developing innovative methods for
ensuring the reliability, dependability and trustworthiness of
software.

II. SOFTWARE QUALITY

A. Introduction
Research on software quality is as old as software research

itself. As in other engineering and science disciplines, one
approach to understand and control an issue is the use of
models. Therefore, quality models have become a well-
accepted means to describe and manage software quality.

B. Definition of Software Quality
What exactly constitutes quality? There are different

perspectives which define quality. For some it is “[the] degree
to which a set of inherent characteristics fulfills requirements”
(ISO/IEC 1999b) while for others it can be synonymous with
“customer value” (Highsmith, 2002), or even “defect levels”
(Highsmith, 2002). It is also said as “something toward which
we strive as an ideal, but may never implement completely.”
(Kitchenham & Pfleeger, 1996). The manufacturing
perspective represents quality as conformance to requirements.
This aspect of quality is stressed by standards such as ISO
9001, which defines quality as “the degree to which a set of
inherent characteristics fulfills requirements” (ISO/IEC
1999b).

III. SOFTWARE QUALITY MODELS
The last three decades in quality modelling generated a

multitude of very diverse models commonly termed “quality
models”. Examples on the spectrum of diverse models include
taxonomic models like the ISO 9126 metric-based models
like the maintainability index (MI) and stochastic models like
reliability growth models (RGMs). The ISO 9126 is mainly
used to define quality, metric-based approaches are used to
assess the quality of a given system and reliability growth
models are used to predict quality. Consequently, we term the
ISO 9126 as definition model, metric-based approaches as
assessment models and RGMs as prediction models.

A. McCall’s Quality Model
D McCall (McCall, Richards & Walters, 1977) introduced

his quality model in 1977. According to Pfleeger (2001), it

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014
ISSN 2229-5518 636

IJSER © 2015
http://www.ijser.org

IJSER

was one of the first published quality models. Figure 1
presents this quality model. Each quality factor on the left
hand side of the figure represents an aspect of quality that is
not directly measurable. On the right hand side are the
measurable properties that can be evaluated in order to
quantify the quality in terms of the factors. McCall proposes a
subjective grading scheme ranging from 0 (low) to 10 (high).

Regarding this model, “unfortunately, many of the metrics
defined by McCall et al. can be measured only
subjectively”[7]. It is therefore difficult to use this framework
to set precise and specific quality requirements. Furthermore,
some of the factors and measurable properties, like traceability
and self-documentation among others, are not really definable
or even meaning at an early definable or even meaningful at
an early stage for non-technical stakeholders.

This model is not applicable with respect to the criteria
outlined in the IEEE Standard for a Software Quality Metrics
Methodology for a top to bottom approach to quality
engineering. Furthermore, it emphasizes the product
perspective of quality. It is therefore not suited as a foundation
for Software Quality Engineering.

Fig 1: McCall’s Quality Model Adapted from Pfleeger (2003) and
McCall et al. (1977)

Fig.2 Boehm’s Quality Model, adapted from Pfleeger (2003), Boehm et
al. (1976; 1978)

B. Boehm’s QualityModel(1978)

The second of the basic and founding predecessors of
today’s quality models is the quality model presented by
Barry W. Boehm. Boehm addresses the contemporary

shortcomings of models that automatically and
quantitatively evaluate the quality of software. Boehm's
model is similar to the McCall Quality Model in that it also
presents a hierarchical quality model structured around
high-level characteristics, intermediate level
characteristics, primitive characteristics - each of which
contributes to the overall quality level.
As Figure 2 shows, this quality model loosely retains the
factor-measurable property arrangement. However, for
Boehm and his colleagues, the prime characteristic of
quality is what they define as “general utility”. According
to [6], this is an assertion that first and foremost, a
software system must be useful to be considered a quality
system. For Boehm, general utility is composed of as-is
utility, maintainability and portability [3]:

• How well (easily, reliably, efficiently) can I
use it [software system] as-is?
• How easy it to maintain is (understand,
modify, and retest)?
• Can I still use it if I change my
environment?

It is interesting to note that in opposition to McCall's
model, Boehm's model is decomposed in a hierarchy that
at the top addresses the concerns of end-users while the
bottom is of interest to technically inclined personnel. Like
the McCall model, this model is mostly useful for a bottom
to top approach to software quality (i.e. it can effectively
be used to define measures of software quality, but is more
difficult to use to specify quality requirements).

C. FURPS/FURPS+
A later, and perhaps somewhat less renown, model that is

structured in basically the same manner as the previous two
quality models is the FURPS model originally presented by
Robert Grady and extended by Rational Software now IBM
Rational Software - into FURPS+3). FURPS stands for:

Functionality

Usability

Reliability

Performance

Supportability

The FURPS-categories are of two different types:
Functional (F) and Non-functional (URPS). These categories
can be used as both product requirements as well as in the
assessment of product quality.

D. Dromey's Quality Model
An even more recent model similar to the McCall’s,

Boehm’s and the FURPS (+) quality model, is the quality
model presented by R. Geoff Dromey . Dromey proposes a
product based quality model that recognizes that quality
evaluation differs for each product. Dromey is focusing on the
relationship between the quality attributes and the sub-

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014
ISSN 2229-5518 637

IJSER © 2015
http://www.ijser.org

IJSER

attributes, as well as attempting to connect software product
properties with software quality attributes. Dromey has built a
quality evaluation framework that analyzes the quality of
software components through the measurement of tangible
quality properties (Figure 3). Each artifact produced in the
software lifecycle can be associated with a quality evaluation
model.

Linkages

Fig 3: Dromey’s Quality Model

E. System Dynamics Modeling
System dynamics is a strong simulation technique for

analyzing and managing complex feedback system. It has its
origin from industrial dynamics introduced by Forrester
(1961). Industrial dynamics is the study of the information
feedback characteristics of industrial system that aims for the
design of improved organizational form and guiding policy. In
industrial management, system dynamics has been applied to a
wide range of problems such as human resource and
knowledge managements, inventory management, product
development, transportation, engineering service, supply chain
management etc. The system dynamics models have been used
to capture the dynamic behavior of supply chain using
information feedback structures with the models represented
by differential equations [4].

Fig 4: System dynamics structure

System dynamics approach consists of two basic
structures: physical structure and information structure.
Physical structure shows the resource converted between
states in the system. An information feedback system exists
whenever the environment leads to a decision that results in
actions that effect the environment and thereby influences
future decisions. [4]

Developing a System Dynamics model of software testing
based on a “stocks and flows” view, and supported by one of
the available software simulation packages, would enable the
behaviour of the system to be simulated and, crucially, to
conduct true “what if?” experiments by altering the values of
constituent variables or “policies” and demonstrating how this
affects other values within the model. [1]

The System Dynamic approach is a method that
focuses on portraying complex systems, and simulate the
relationship between variables across time and space. This
is achieved through the concept of internal feed-back
loops and time-delays that will influence behaviour in the
system as a whole. In System Dynamics dynamic
misperceptions can be identified and corrected if we have
correctly calculated and represented key factors and behaviors
inside the system itself. Hence, the system dynamics approach
allows to build and test policies and assumptions in order to
improve understanding of system behaviour or to change the
observed behaviour. [5]

IV. CONCLUSION
Throughout this paper the aim has been to briefly survey

some different models of quality – without going deep into a
particular model and to identify which model is more
appropriate. It was found that the models proposed by McCall,
Boehm and Dromey focus on the product perspective of
quality. Furthermore, they are primarily useful in a bottom up
approach to quality that is not suitable for Software Quality
Engineering.

Criteria/goals McCall,
1977

Boehm,
1978

Correctness * *

Reliability * *

Integrity * *

Usability * *

Effiency * *

Maintainability * *

Testability *

Interoperability *

Flexibility * *

Reusability * *

Portability * *

Clarity *

Product Model

Component
A

Tangible quality
carrying

properties

Component
B

Tangible quality
carrying

properties

High Level
Quality Attributes

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014
ISSN 2229-5518 638

IJSER © 2015
http://www.ijser.org

IJSER

Modifiability *

Documentation *

Resilience *

Understandability *

Validity *

Functionality

Generality *

Economy *
Table 1: Comparison between criteria/goals of the McCall and Boehm

quality models

This paper would suggest that System Dynamics would be
the most appropriate methodology to achieve dynamic
software quality issues. The reason is that most importantly it
can simulate the relationship between variables across time
and space and allows to build and test policies and
assumptions. The most valued aspect is that it can shifts the
focus from one aspect of a system to the behavior of the
system as a whole. Further research is needed to see if the
factors and measures associated with System Dynamics make
this model usable for Software Quality Engineering in
practice.

Acknowledgment
I would like to express my deep sense of gratitude and

sincere thanks to all who helped me to complete this paper
successfully. I am deeply indebted to my guide Prof. S.
Sivakumar, Dept. of Mechanical Engineering for his
excellent guidance, positive criticism, valuable comments,
suggestions and constructive feedback. I avail my opportunity
to express my profound thanks to my colleagues in Trinity
College of Engineering, Trivandrum.

References

[1] Abdel-Hamid, T.K., 1991: Software Project Dynamics: An
Integrated Approach, PrenticeHall, Upper Saddle River, USA.

[2] Boehm, B., 1981: Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, USA.

[3] B.W. Boehm, J.R. Brown, J.R. Kaspar, M. Lipow, G. MacCleod (1978)
, “Characteristics of Software Quality”, North Holland, Amsterdam.

[4] Forrester, J. W. & Senge, P. M., (1980): Tests for Building Confidence
in System Dynamics Models, in Legasto, jr., A.A, Forrester, J.W. &
Lyneis, J.M. (Eds.), System Dynamics: TIMS Studies in the
Management Science, 14, North-Holland, New York, USA, 209-228.

[5] Sterman, J.D., 2003: Business Dynamics: Systems Thinking and
Modeling for a Complex World, Irwin/McGraw-Hill, Chicago, USA.

[6] Rudiger Lincke, Tobias Gutzmann and Welf Lowe, Software Quality
Prediction Models Compared, 10th International Conference on Quality
Software, 2010

[7] M. Ruiz et al., A Simplified model of software project dynamics, The
Journal of Systems and Software 59 (2001) pp. 299-309

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014
ISSN 2229-5518 639

IJSER © 2015
http://www.ijser.org

IJSER

